Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(21): 9432-9439, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37158269

RESUMO

Wide band gap (WBG) alkaline-earth stannate transparent oxide semiconductors (TOSs) have attracted increasing attention in recent years for their high carrier mobility and outstanding optoelectronic properties, and have been applied widely in various devices, such as flat-panel displays. Most alkaline-earth stannates are grown by molecular beam epitaxy (MBE); there are some intractable issues with the tin source including the volatility with SnO and Sn sources and the decomposition of the SnO2 source. In contrast, atomic layer deposition (ALD) serves as an ideal technique for the growth of complex stannate perovskites with precise stoichiometry control and tunable thickness at the atomic scale. Herein, we report the La-SrSnO3/BaTiO3 perovskite heterostructure heterogeneously integrated on Si (001), which uses ALD-grown La-doped SrSnO3 (LSSO) as a channel material and MBE-grown BaTiO3 (BTO) as a dielectric material. The reflective high-energy electron diffraction and X-ray diffraction results indicate the crystallinity of each epitaxial layer with a full width at half maximum (FWHM) of 0.62°. In situ X-ray photoelectron spectroscopy results confirm that there was no Sn0 state in ALD-deposited LSSO. Besides, we report a strategy for the post-treatment of LSSO/BTO perovskite heterostructures by controlling the oxygen annealing temperature and time, with a maximum oxide capacitance Cox of 0.31 µF cm-2 and a minimum low-frequency dispersion for the devices with 7 h oxygen annealing at 400 °C. The enhancement of capacitance properties is primarily attributed to a decrease of oxygen vacancies in the films and interface defects in the heterostructure interfaces during an additional ex situ excess oxygen annealing. This work expands current optimization methods for reducing defects in epitaxial LSSO/BTO perovskite heterostructures and shows that excess oxygen annealing is a powerful tool for enhancing the capacitance properties of LSSO/BTO heterostructures.

2.
J Appl Phys ; 130(7): 070907, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34483360

RESUMO

Progress in computing architectures is approaching a paradigm shift: traditional computing based on digital complementary metal-oxide semiconductor technology is nearing physical limits in terms of miniaturization, speed, and, especially, power consumption. Consequently, alternative approaches are under investigation. One of the most promising is based on a "brain-like" or neuromorphic computation scheme. Another approach is quantum computing using photons. Both of these approaches can be realized using silicon photonics, and at the heart of both technologies is an efficient, ultra-low power broad band optical modulator. As silicon modulators suffer from relatively high power consumption, materials other than silicon itself have to be considered for the modulator. In this Perspective, we present our view on such materials. We focus on oxides showing a strong linear electro-optic effect that can also be integrated with Si, thus capitalizing on new materials to enable the devices and circuit architectures that exploit shifting computational machine learning paradigms, while leveraging current manufacturing infrastructure. This is expected to result in a new generation of computers that consume less power and possess a larger bandwidth.

3.
ACS Nano ; 15(2): 3468-3480, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33512156

RESUMO

To achieve practically high electrocatalytic performance for the oxygen evolution reaction (OER), the active surface area should be maximized without severely compromising electron and mass transport throughout the catalyst electrode. Though the importance of electron and mass transport has been studied using low surface area catalysts under low current densities (∼tens of mA/cm2), the transport properties of large surface area catalysts under high operating current densities (∼500 mA/cm2) for practical OER catalysis have rarely been explored. Herein, three-dimensional (3D) hierarchically porous anodized nickel foams (ANFs) with large and variable surface areas were synthesized via electrochemical anodization of 3D nickel foam and applied as OER electrocatalysts in Fe-free and unpurified KOH electrolytes. Using Fe-free and in situ Fe-doped ANF that were prepared in Fe-free and unpurified electrolytes, respectively, we investigated the interdependent effects of active surface area and transport properties on OER activity under practically high current densities. While activity increased linearly with active surface area for Fe-free ANF, the activity of Fe-doped ANF showed a nonlinear increase with active surface area due to lower electrocatalytic activity enhancement. Detailed investigations on the possible factors (Fe incorporation, mass transport, and electron transport) identified that electron transport limitations played the major role in restricting the activity enhancement with increasing active surface area for Fe-doped ANF, although Fe-doped ANF has electron transport properties better than those of Fe-free ANF. This study exemplifies the growing significance of electron transport properties in large surface area catalysts, especially those with superb intrinsic catalytic activity and high operating current density.

4.
ACS Appl Mater Interfaces ; 12(45): 50985-50995, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33119248

RESUMO

Density functional theory (DFT) is used to better understand the oxidation of Pd metal using vacuum ultraviolet (VUV) light co-exposed with O2, which is known to produce O and O3. The oxidation of Pd metal arising from O, O2, and O3 is assessed on bare Pd, Pd with a 0.25 monolayer of adsorbed atomic O, and Pd with increasing O incorporation into the substrate. DFT calculations are complemented experimentally by co-exposing 20 nm Pd films to 1 Torr of O2 and VUV photons (6.5 < hν < 11.3 eV) from a D2 lamp at temperatures ranging from 50 to 200 °C and times from 30 s to 40 min. Oxidation of Pd is characterized using in situ X-ray photoelectron spectroscopy. Co-exposures at 50 °C and 1 Torr O2 are performed with the Pd illuminated by the VUV light and shadowed from the VUV light in attempting to select for the oxidant that impinges on the Pd surface and causes oxidation. Results suggest that atomic O incident from the gas phase is responsible for oxidation of Pd, as no PdOx formation is observed for the same time period with the sample shadowed. Growth of PdOx via O diffusion is studied with the nudged elastic band method. Atomic O diffusion through Pd has an activation energy barrier of ∼2.87 eV with respect to a surface O. This decreases to ∼1.80 eV once the 0.25 monolayer of O occupies the surface. The extent of Pd oxidation is limited to the near-surface Pd region for all times and temperatures investigated. PdOx formation does not appear to exceed one to two atomic layers of Pd for conditions explored herein.

5.
J Chem Phys ; 146(5): 052817, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178808

RESUMO

Using in situ X-ray photoelectron spectroscopy, reflection high-energy electron diffraction, and density functional theory, we analyzed the surface core level shifts and surface structure during the initial growth of ABO3 perovskites on Ge (001) by atomic layer deposition, where A = Ba, Sr and B = Ti, Hf, Zr. We find that the initial dosing of the barium- or strontium-bis(triisopropylcyclopentadienyl) precursors on a clean Ge surface produces a surface phase that has the same chemical and structural properties as the 0.5-monolayer Ba Zintl layer formed when depositing Ba by molecular beam epitaxy. Similar binding energy shifts are found for Ba, Sr, and Ge when using either chemical or elemental metal sources. The observed germanium surface core level shifts are consistent with the flattening of the initially tilted Ge surface dimers using both molecular and atomic metal sources. Similar binding energy shifts and changes in dimer tilting with alkaline earth metal adsorption are found with density functional theory calculations. High angle angular dark field scanning transmission microscopy images of BaTiO3, SrZrO3, SrHfO3, and SrHf0.55Ti0.45O3 reveal the location of the Ba (or Sr) atomic columns between the Ge dimers. The results imply that the organic ligands dissociate from the precursor after precursor adsorption on the Ge surface, producing the same Zintl template critical for perovskite growth on Group IV semiconductors during molecular beam epitaxy.

6.
J Vis Exp ; (113)2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27501462

RESUMO

Atomic layer deposition (ALD) is a commercially utilized deposition method for electronic materials. ALD growth of thin films offers thickness control and conformality by taking advantage of self-limiting reactions between vapor-phase precursors and the growing film. Perovskite oxides present potential for next-generation electronic materials, but to-date have mostly been deposited by physical methods. This work outlines a method for depositing SrTiO3 (STO) on germanium using ALD. Germanium has higher carrier mobilities than silicon and therefore offers an alternative semiconductor material with faster device operation. This method takes advantage of the instability of germanium's native oxide by using thermal deoxidation to clean and reconstruct the Ge (001) surface to the 2×1 structure. 2-nm thick, amorphous STO is then deposited by ALD. The STO film is annealed under ultra-high vacuum and crystallizes on the reconstructed Ge surface. Reflection high-energy electron diffraction (RHEED) is used during this annealing step to monitor the STO crystallization. The thin, crystalline layer of STO acts as a template for subsequent growth of STO that is crystalline as-grown, as confirmed by RHEED. In situ X-ray photoelectron spectroscopy is used to verify film stoichiometry before and after the annealing step, as well as after subsequent STO growth. This procedure provides framework for additional perovskite oxides to be deposited on semiconductors via chemical methods in addition to the integration of more sophisticated heterostructures already achievable by physical methods.


Assuntos
Compostos de Cálcio/química , Germânio/química , Óxidos/química , Semicondutores , Estrôncio/química , Titânio/química , Cristalização , Espectroscopia Fotoeletrônica , Silício
7.
ACS Appl Mater Interfaces ; 8(8): 5416-23, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26859048

RESUMO

Germanium (Ge)-based metal-oxide-semiconductor field-effect transistors are a promising candidate for high performance, low power electronics at the 7 nm technology node and beyond. However, the availability of high quality gate oxide/Ge interfaces that provide low leakage current density and equivalent oxide thickness (EOT), robust scalability, and acceptable interface state density (D(it)) has emerged as one of the most challenging hurdles in the development of such devices. Here we demonstrate and present detailed electrical characterization of a high-κ epitaxial oxide gate stack based on crystalline SrHfO3 grown on Ge (001) by atomic layer deposition. Metal-oxide-Ge capacitor structures show extremely low gate leakage, small and scalable EOT, and good and reducible D(it). Detailed growth strategies and postgrowth annealing schemes are demonstrated to reduce Dit. The physical mechanisms behind these phenomena are studied and suggest approaches for further reduction of D(it).

8.
Nat Nanotechnol ; 10(1): 84-90, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25437745

RESUMO

The rapidly increasing global demand for energy combined with the environmental impact of fossil fuels has spurred the search for alternative sources of clean energy. One promising approach is to convert solar energy into hydrogen fuel using photoelectrochemical cells. However, the semiconducting photoelectrodes used in these cells typically have low efficiencies and/or stabilities. Here we show that a silicon-based photocathode with a capping epitaxial oxide layer can provide efficient and stable hydrogen production from water. In particular, a thin epitaxial layer of strontium titanate (SrTiO3) was grown directly on Si(001) by molecular beam epitaxy. Photogenerated electrons can be transported easily through this layer because of the conduction-band alignment and lattice match between single-crystalline SrTiO3 and silicon. The approach was used to create a metal-insulator-semiconductor photocathode that, under a broad-spectrum illumination at 100 mW cm(-2), exhibits a maximum photocurrent density of 35 mA cm(-2) and an open circuit potential of 450 mV; there was no observable decrease in performance after 35 hours of operation in 0.5 M H2SO4. The performance of the photocathode was also found to be highly dependent on the size and spacing of the structured metal catalyst. Therefore, mesh-like Ti/Pt nanostructured catalysts were created using a nanosphere lithography lift-off process and an applied-bias photon-to-current efficiency of 4.9% was achieved.

9.
Nano Lett ; 14(8): 4360-7, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25072099

RESUMO

TiO2 is being widely explored as an active resistive switching (RS) material for resistive random access memory. We report a detailed analysis of the RS characteristics of single-crystal anatase-TiO2 thin films epitaxially grown on silicon by atomic layer deposition. We demonstrate that although the valence change mechanism is responsible for the observed RS, single-crystal anatase-TiO2 thin films show electrical characteristics that are very different from the usual switching behaviors observed for polycrystalline or amorphous TiO2 and instead very similar to those found in electrochemical metallization memory. In addition, we demonstrate highly stable and reproducible quantized conductance that is well controlled by application of a compliance current and that suggests the localized formation of conducting Magnéli-like nanophases. The quantized conductance observed results in multiple well-defined resistance states suitable for implementation of multilevel memory cells.

10.
J Phys Chem Lett ; 5(7): 1091-5, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-26274454

RESUMO

Electromigration of copper in integrated circuits leads to device failure. Potential solutions involve capping the copper with ultrathin cobalt films. We report the properties of cobalt films after deposition on polycrystalline Cu at 265 °C by atomic layer deposition from H2 and bis(N-tert-butyl-N'-ethylpropionamidinato) cobalt(II) (CoAMD). We find intermixing of Co and Cu producing a transition layer on the Cu nearly as thick as the Co-rich overlayer. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry depth profiling reveal that a finite amount of Cu continuously segregates to the progressing Co surface, minimizing the free surface energy, throughout deposition up to at least 16 nm. The Cu-stabilized Co film initially follows 2D growth and strain-relieving 3D crystal formation is apparent beyond 2 nm of film growth. Depth profiling indicates that Cu likely diffuses within the Co film and along the polycrystalline Co grain boundaries.

11.
Langmuir ; 29(38): 11868-75, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23978272

RESUMO

A technique enabling the detection and quantification of low density sites on planar SiO2 surfaces is demonstrated. Fluorescent probes are used to titrate free hydroxyl and strained siloxane sites on the surface of amorphous SiO2 substrates in vacuum. The titration of free hydroxyl sites was performed to validate the method and to provide a reference for the measurement of the strained siloxane site density. Perylene derivatives with different functional groups are chemisorbed onto the surface sites, enabling in situ photoluminescence (PL) measurements of the bound fluorophores. An amine functional group is used to selectively titrate strained siloxane sites, while an alcohol group is used for the titration of free hydroxyl sites. Emission intensity was found to be nonlinear with coverage for bound fluorophore densities greater than 0.1 nm(-2), necessitating the removal of molecules from the surface into a solution to obtain accurate density measurements. For lower densities, the coverage of bound fluorophores can be estimated directly from in situ PL measurements. The measured areal densities of bound fluorophores after titrating free hydroxyl sites are in good agreement with literature values for the densities of such sites on high surface area silica. PL measurements of SiO2 surfaces titrated with an amine derivative of perylene indicate that strained siloxane sites exist for vacuum pretreatment temperatures of 300 °C and increase with increasing pretreatment temperature. Densities of strained siloxane sites on the silica surface are estimated at 0.004-0.02 nm(-2) for pretreatment temperatures of 300-700 °C, demonstrating the sensitivity of this technique.

12.
Chemphyschem ; 14(10): 2270-6, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23512241

RESUMO

Niobium-modified TiO2 hierarchical spherical micrometer-size particles, which consist of many nanowires, are synthesized by solvothermal synthesis and studied as photoelectrodes for water photo-oxidation and dye-sensitized solar cell (DSSC) applications. Incorporation of Nb leads to a rutile-to-anatase TiO2 phase transition in the TiO2 hierarchical spheres (HSs), with the anatase percentage increasing from 0% for the pristine TiO2 HSs to 47.6% for the 1.82 at.% Nb-incorporated TiO2 sample. Incorporation of Nb leads to significant improvements in water photo-oxidation with the photocurrents reaching 70.5 µA cm(-2) at 1.23 V versus the reversible hydrogen electrode, compared with 28.3 µA cm(-2) for the pristine TiO2 sample. The photoconversion efficiency of Nb:TiO2 HS-based DSSCs reaches 6.09±0.15% at 0.25 at.% Nb, significantly higher than that for the pristine TiO2 HS cells (3.99±0.02%). In addition, the incident-photon-to-current efficiency spectra for DSSCs show that employing TiO2 and Nb:TiO2 HSs provides better light harvesting, especially of long-wavelength photons, than anatase TiO2 nanoparticle-based DSSCs.


Assuntos
Fontes de Energia Elétrica , Microesferas , Nióbio/química , Energia Solar , Titânio/química , Eletrodos , Tamanho da Partícula , Propriedades de Superfície
13.
Bioresour Technol ; 134: 59-65, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23500560

RESUMO

The acidic ionic liquid 1-H-3-methylimidazolium chloride can effectively pretreat yellow pine wood chips under mild conditions for enzymatic saccharification. Wood samples were treated at temperatures between 110 and 150°C for up to 5 h in the ionic liquid and three fractions collected; a cellulose rich fraction, lignin, and an aqueous fraction. This treatment caused the hemicellulose and the lignin to be degraded and dissolved from the cell walls of the pine wood. The lignin was depolymerized and subsequently dissolved in the ionic liquid. This process occurred more quickly at higher temperatures, although at the highest temperatures tested, significant cellulose degradation also occurred. The cellulose rich fraction was saccharified using cellulase from Trichoderma viride, with longer pretreatment times at 130°C resulting in higher glucose yields.


Assuntos
Biotecnologia/métodos , Celulase/metabolismo , Líquidos Iônicos/farmacologia , Lignina/isolamento & purificação , Pinus/efeitos dos fármacos , Polissacarídeos/isolamento & purificação , Ácidos Sulfúricos/farmacologia , Boratos/farmacologia , Glucose/análise , Imidazóis/farmacologia , Manose/análise , Trichoderma/enzimologia
14.
Bioresour Technol ; 118: 584-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22698446

RESUMO

Oak wood lignin, which was separated from the wood using dissolution in the ionic liquid 1-methyl-3-ethylimidazolium acetate and subsequent precipitation, was successfully depolymerized in the acidic ionic liquid 1-H-3-methylimidazolium chloride under mild conditions (110-150 °C). Based on gel permeation chromatography results, an increase in temperature from 110 to 150 °C increased the rate of reaction, but did not significantly change the final size of the lignin fragments. Nuclear magnetic resonance and infrared spectroscopy were utilized to demonstrate that the depolymerization proceeded via a hydrolysis reaction that cleaved the alkyl-aryl ether linkages. Coupling of the lignin fragments was also shown to occur in the reaction mixture. These hydrolysis results are consistent with the literature on acid catalyzed depolymerization of lignin in conventional solvents and with recent model compound studies involving guaiacylglycerol-ß-guaiacyl ether and veratrylglycerol-ß-guaiacyl ether done in acidic ionic liquids.


Assuntos
Imidazóis/farmacologia , Líquidos Iônicos/farmacologia , Lignina/química , Polimerização/efeitos dos fármacos , Quercus/química , Solventes/farmacologia , Madeira/química , Catálise/efeitos dos fármacos , Cromatografia em Gel , Padrões de Referência
15.
ChemSusChem ; 3(9): 1078-84, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20677206

RESUMO

The hydrolysis of ß--O--4 bonds in two lignin model compounds was studied in an acidic ionic liquid, 1-H-3-methylimidazolium chloride. The ß--O--4 bonds of both guaiacylglycerol-ß-guaiacyl ether and veratrylglycerol-ß-guaiacyl ether underwent catalytic hydrolysis to produce guaiacol as the primary product with more than 70 % yield at 150 °C. Up to 32 wt % substrate concentration could be treated in the system without a decrease in guaiacol production. The ionic liquid could be reused without loss of activity in guaiacol production from both guaiacylglycerol-ß-guaiacyl ether and veratrylglycerol-ß-guaiacyl ether. A possible mechanism accounting for the guaiacol production is presented.


Assuntos
Lignina/química , Hidrólise , Imidazóis , Líquidos Iônicos
16.
J Am Chem Soc ; 128(51): 16510-1, 2006 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-17177394

RESUMO

Thin films ( approximately 30 nm) of amorphous RuP alloys (P approximately 15-20%) can be grown by CVD from the single source precursor cis-H2Ru(PMe3)4 at 250-300 degrees C and 200 mTorr pressure on native SiO2.


Assuntos
Membranas Artificiais , Compostos Organometálicos/química , Fósforo/química , Rutênio/química , Tamanho da Partícula , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...